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Optimizing Finite-Burn, Round-Trip Trajectories
with I, Constraints and Mass Discontinuities

Christopher L. Ranieri* and Cesar A. Ocampo’
University of Texas at Austin, Austin, Texas 78712

Two indirect trajectory optimization formulations are used to solve a multipoint boundary-value problem to
compute fuel-optimal, time-constrained, round-trip, long-duration finite-burn trajectories. The first formulation
uses two control discontinuities corresponding to the arrival at the target and the following departure. A second
formulation, using a state equality constraint across the stay time to constrain the spacecraft to match the position
and velocity of the target, verifies the boundary-value problem posed by the first formulation. The minimum pro-
pellant missions constrain the stay time to be greater than or equal to a specified value and the total round trip time
to be less than or equal to a specified value. Additionally, the conditions for optimal round-trip trajectories with
mass discontinuities at the target and upper and lower bounds on the specific impulse I, for variable I, engines
are formulated. The results are applied to nuclear electric, constant, or variable-specific-impulse, human-crewed
missions. Earth-Mars and Earth—Jupiter round-trip trajectories are found efficiently. Missions that detail a con-
trollability “ceiling” for variable-specific-impulse engines with Iy, bounds and mass discontinuities are presented.
Off-boundary solutions for the time inequality constraints are also discussed.

Nomenclature

= exhaust velocity

constraint vector for boundary-value problem

Bolza function

gravity acceleration vector

Hamiltonian

cost function

spacecraft mass

power

spacecraft position vector

switching function

state equality constraint vector

slack variables used with time inequality constraints
thrust

time

stay time at target

thrust unit vector

control vector

spacecraft velocity vector

parameter vector for boundary-value problem
in-plane thrust angle

out-of-plane thrust angle

mass discontinuity

Lagrange multiplier vector adjoined with slack variables
costate Lagrange multiplier vector

mass Lagrange multiplier

position costate Lagrange multiplier vector
magnitude of velocity costate Lagrange multiplier vector
= velocity costate Lagrange multiplier vector
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A, = time derivative of the magnitude of the velocity
costate multiplier vector

JLcB central-body’s gravitational constant

¥ = kinematic constraints vector

w = Lagrange multiplier vector adjoined
with kinematic constraints

Subscripts

max = maximum value: thrust or power

opt = optimal value

s/lc = spacecraft

T = target body (Earth at fy, t;; Mars/Jupiter at t,, t,)

uc = unconstrained

Introduction

SYSTEMATIC application of the indirect method is used
to determine an optimal, minimum propellant, long-duration
finite-burn, round-trip trajectory between any two orbits around a
common central body. Long-duration finite burn means that the en-
gines are “on” for a significant portion of the trajectory, regardless
of the thrust acceleration. The round-trip trajectory includes a spec-
ified minimum stay time at the target where the spacecraft coasts
along with the target. The total time of flight is constrained to be less
than or equal to a specified maximum time of flight. These inequal-
ity constraints are more general than those used in previous papers
where the stay time and total time of flight are either free variables
or fixed, user-specified values as shown in the work by Casalino
and Colasurdo' and Casalino et al.? These inequality constraints are
shown to open up the solution space, allowing for optimal trajec-
tories to be found off the boundaries of the fixed-value constraints.
The target system in this formulation can be another spacecraft, a
planet, a moon, or any other celestial body that is orbiting the same
central body as the spacecraft that is performing the transfer. For
the missions presented, the planets are treated as zero-sphere-of-
influence point masses moving around the sun (the only gravitating
body) with a realistic data (JPL DE405 ephemerides).* The sample
missions focus on high-power, fast round-trip missions to Mars and
Jupiter. Figure 1 shows a schematic of this mission plan.
The optimal control problem is solved as an indirect opti-
mization problem to minimize propellant usage; the associated

Data available online at http://ssd.jpl.nasa.gov/eph_info.html [cited 18
Sept. 2003].
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Fig. 1 Generalized round-trip, time-constrained trajectory.

Euler-Lagrange equations are integrated numerically, and the con-
trols include the thrust direction and the constrained engine pa-
rameters. The start and end times of the inbound and outbound
trajectories are constrained search variables. The resulting multi-
point boundary-value problem is solved using the controls deter-
mined from the Pontryagin maximum principle.? A previous paper
details the formulation of the optimal round-trip trajectory by de-
riving the first differential optimality conditions using this mission
plan as a trajectory with two control corner conditions at which
the Lagrange multipliers that control the trajectory might or might
not be continuous.* This previous paper also provides an extensive
review of other optimization methods applied to round-trip trajec-
tory optimization and other uses of indirect methods for trajectory
optimization.

Mass discontinuities at the target system at #; and t, are included in
the optimal control formulation. For realistic mission scenarios, the
spacecraft will most likely have a mass discontinuity at some point
during the mission. These mass discontinuities can either increase
or decrease the mass of the vehicle. A positive mass discontinuity
corresponds to an increase in the spacecraft mass and can be used
for sample return missions where the spacecraft’s mass increases
with the addition of a payload of scientific samples. A positive mass
discontinuity can also account for picking up a propellant load to
be used on the return trajectory; however, in the examples shown it
will be assumed that all of the propellant needed for the mission is
transported throughout. A negative mass discontinuity can represent
a spent vehicle booster stage drop-off, mass left on the surface of a
planet, supplies delivered to the target system, or fuel burned while
in the target system.

Additionally, for variable-specific-impulse (VSI) engines, realis-
tic upper and lower bounds are added for the specific impulse I, or
thrust values, and the optimal control problem is adjusted to account
for these additional constraints. An example of this type of engine
is the VASIMR (Variable Specific Impulse Magnetoplasma Rocket)
engine currently under development.® In contrast to a constant spe-
cific impulse engine (CSI), the variability of the I, or thrust of a
VSI engine increases the performance of these missions, providing
higher payload mass fractions. However, realistic trajectories for
missions using engines such as VASIMR must include the engine
specific upper and lower bounds for the I, or thrust, which limits
the performance and extra degree of freedom of the VSI engine.
The effects on the propellant usage from the bounds of VSI mis-
sions are illustrated in a comparison to unbounded VSI missions.
The bounded VSI missions are still more efficient than comparable
CSI missions.

The optimal control problem is reformulated in order to verify
the boundary-value problem posed by the round-trip trajectory con-

ditions found from using the two corner control discontinuities as
shown by Ranieri and Ocampo.* Instead of using two control discon-
tinuities to deal with the arrival and departure of the spacecraft at the
target system, a state equality constraint is used. The state equality
constraint enforces that the spacecraft always maintains zero rela-
tive position and velocity with its target during the entire stay time.
The first formulation using the two corner control discontinuities
requires that the position and velocity of the spacecraft match the
target’s position and velocity only at #; and #, but does not directly
enforce this constraint across the stay time. Therefore, a feasible
solution that satisfied all of the kinematic boundary constraints, but
not necessarily all of the transversality conditions, could have the
spacecraft match the target position and velocity at times #; and f,.
However, the spacecraft could thrust away from the target and then
back to the target during the stay time between ¢, and #,. This is ob-
viously not an optimal stay time trajectory. Formulating the problem
using the state equality constraint during the stay time removes this
feasible solution and eliminates the user-specified zero-thrust value
used during the stay time in the original formulation. The boundary-
value problem posed by this method is shown to be identical to the
original problem formulation.

System Equations and the Optimal Control Problem

First, the equations of motion of the trajectory are defined:

v
x=|g+T/mu ()]
—T/c

where

The force field is a time-invariant central body field:
g = —ncr/r’ 3

For a CSI engine, the controls are defined as the thrust direction
and the thrust magnitude:
" @
we=|,

lu| =1 (&)

with constraints

0<T < Tha (6)

For a VSI engine, the controls are defined as the thrust direction,
the exhaust velocity or thrust magnitude, and the power:

u
u.=|c or u=|T (@)
P

with constraints

lul =1 ®)
0<P < Ppa O]
c=2P/T (10)

The cost function for the round-trip trajectory can be chosen to
either maximize the final mass at the return to the point of origin
for a user-specified initial mass or minimize the initial mass for a
user-specified final mass. The Hamiltonian and Bolza functions are
first presented using the two corner control discontinuities,* and the
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modifications caused by the state equality constraint are introduced
later:

H=Xix=Av+Xg+@/m)Xu—(T/c)r, (11)

AN =H, (12)
Equation (12) yields
. )
A =—A{<—g) (13)
ar
A, = -\ (14)

. T
p <W))\Zu (15)

The spacecraft must match the position and velocity of the target
at #; and , and also match the point of origin’s position and velocity
at o and . This yields four sets of physical state constraints that
must be met for a valid solution when solving the problem using the
two corner control discontinuities:

b, = |:rs/c(ti) _rTi(ti)i| -0,

j =0,1,2, 16
vy (ti) — vri(ti) ! f (16)

The inequality constraints on the stay time at the target and on
the total time of flight are treated via slack variables. They allow the
program to search for the optimal stay time greater than a minimum
prescribed stay time and a time of flight (TOF) no longer than a pre-
scribed total time of flight. Therefore, the times and corresponding
states in this problem are search parameters:

h=t+ Lstay + 512 a7
t; =ty + TOF — 53 (18)

These inequality constraints are then adjoined to the Bolza func-
tion with their own Lagrange multipliers. The Bolza function takes
the form

G=my+wihy+w P +wlt, +wit,

+91(tz—f1 —lslay—Slz)+92(lf—l‘0—TOF+S§) (19)
The spacecraft thrust direction is aligned with the primer vector
as defined by Lawden®:

u=2A/h (20)

The time derivative of the mass multiplier, Eq. (15), can be rewrit-
ten using the thrust unit direction vector:

o = (T/m))X[w =0T [m? Q1)

For the CSI engine, the well-known thrust switching function is
defined as

§= )\u/m - )‘m/C (22)
For VSI engines, the thrust switching function is defined as
Svsir = (Ay/m) — T (Xn)/(2P) (23)

The partial of the Hamiltonian is taken with respect to the thrust
to determine the optimal thrust value:

Tuc,opt = Pmax)"v/(m)‘m) (24)

If exhaust velocity is used as the control, a VSI power switching
function is defined as

Svsip = 2(Ay/m — Ay /c)/c (25)

Following the same procedure as used to determine the optimal
thrust value, the optimal exhaust velocity is shown to be

Cuc,opt = 2Wl}‘m/)"v (26)

Table 1 Thrust and exhaust velocity optimal values

Control Control variable Optimal control
variable region value

T Tinin < Te, opt < Tnax The, opt = Phy/(mim)
T Tuc, opt > Tmax T= Tmax

T Tuc, opt =< Thin; SVSI,T >0 T = Thin

T Tuc, opt = Trnin» SVSI,T <0 T=0

c Cmin < Cuc, opt < Cmax Cuc, opt = 2m)\m/)‘v
c Cuc, opt < Cmin € = Cmin

c Cuc, opt = Cmax SVSI,c >0 € = Cmax

c

Cuc,uptzcmax;SVSI.c<0 P:Pmin C.T=0

I, or Thrust Bounds

In modeling these trajectories, it is more realistic to include upper
and lower bounds to the control variable of either thrust or exhaust
velocity (i.e., I5p). Ocampo’ and Casalino and Colasurdo' have dis-
cussed the derivation of these bounds previously. The applicable
control laws are summarized in Table 1.

Optimality Conditions at Control
Corner Discontinuities

The first differential of the cost function yields the following
conditions for optimality under the control of the primer vector
and with the costates governed by the costate equation (12). The
derivation of these conditions closely follows the corner conditions
laid out by Hull® and Bryson and Ho.” The conditions with plus
or minus subscripts correspond to the value of the variable before
(e.g., H,_) or after (e.g., H,) the control corner at that time (e.g.,
t1). The augmented cost function is

tf
J:G+/ (H = XTx)dr 27
10

The conditions at the initial state and time #, are
Gy = Hy (28)
G =—\) (29)

The conditions at the first corner at ¢, are

Gy =0= 205, (30)
Gor =0=1 — 1] — tyuy — 57 (31)
Gy =Hy, — H_ (32)
G =A_ —Al, (33)

The conditions at the second corner at ¢, are

Gy =0=265, (34)
Gy =0 =1t; — tg — TOF + 52 (35)
Gy =Hy, — Hy_ (36)
Go=X_—Ay, (37)

The conditions at the final state and time ¢, are
Gy¢ = —Hy (38)
G =] (39)
Using the simplifications spelled out in Ref. 4, the boundary-value
problem can be formulated and posed. Adding the bounds on the

I, or thrust values for the VSI engines does not directly affect the
boundary-value problem.
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Mass Discontinuities at the Target System

It is sometimes desirable to have a mass discontinuity Am upon
arrival at #; or at departure at #, from the target system. To add this
functionality to the boundary-value problem, the Bolza function,
Eq. (19), must be modified to reflect these changes in the spacecraft’s
state at times #; and #,.

First, the mass discontinuity is defined and adjoined to the Bolza
function:

¢m=[m” e _Am‘}zo (40)

myy —Mmyp_ 7Am2
G=my+wihy+w P, +with, +whp, +wl v,

+01(tr — 11 — tyay — 57) + 02(ty — to — TOF + 53) (41

With these modifications, taking the first differential of Eq. (27)
yields most of the same conditions, Eqgs. (28-39), found for the
case without the mass discontinuity. However, Eqgs. (33) and (37)
no longer apply for the entire state vector. These equations, which
describe the behavior of the Lagrange multipliers across the corners
at #; and 1,, are still valid for the position and velocity components
of the state vector but no longer for the spacecraft mass. A new set
of equations must be used to describe the mass Lagrange multipliers
at the corners ¢, and 1,.

The mass multiplier before and after the corner at #; is now
described by

Gmlf = )‘mlf (42)
G7711+ = _)\-m1+ (43)

Applying these equations to the new Bolza function, Eq. (41),
yields that the mass discontinuity is again continuous across the
corners, which is identical to the solution found for the case with no
mass discontinuities*:

homt— = A1y (44)

Combining Egs. (32), (33) (for position and velocity multipli-
ers only), and (44) yields the same results as found before for the
behavior of the switching function at the corner.

Sllef - 01 = 0 (45)

The solution process is identical across the second corner at time
t,, and Egs. (36) and (37) (for position and velocity multipliers only)
reduce to a similar result:

Ama— = )\m2+ (46)
STy — 0, =0 47

This indicates that the product of the switching function and the
thrust must be equal at the end of the outbound trajectory and at
the start of the inbound trajectory. The same equality holds for the
problem with no mass discontinuity*:

S04y = 51-Ti- (43)
It is also found, as shown in Ref. 4,
SoTo = S¢Ty (49)

The particular significance of Eq. (48) for a CSI engine, which has
a constant thrust and exhaust velocity, is that the velocity multiplier
magnitude is no longer the same at the end of the outbound and at the
start of the inbound trajectories. This conclusion cannot necessarily
be made for a VSI engine as the values for the thrust and exhaust
velocity are not necessarily equal at times #; and 7,. As shown with
Eqgs. (45) and (47), the boundary-value problem is the same for
trajectories with or without specified mass discontinuities at times
t; and/or t, (Ref. 4).

Verification of Boundary-Value Problem

As mentioned earlier, the optimal control problem detailed in
Ref. 4 is reformulated to verify the earlier theoretical results and to
more rigorously deal with the stay time trajectory. The new optimal
control formulation using the state equality constraint is solved by
first adjoining the state equality constraint to the Hamiltonian. How-
ever, the state equality constraint is not directly added to the Hamil-
tonian. Rather, time derivatives of the state equality constraints on
position and velocity are taken until each equality constraint has an
explicit dependence on the control variables. The position equality
constraints are defined as

SEr = (rs/c _rT)le =0 (50)

Taking two time derivatives of the position equality constraint
yields a constraint that is explicitly a function of the control variables
T and u:

SE! =ay.—ar =[(T/m)u+g—arlsx1 =0 (5D
The velocity equality constraints are defined as
SE, = (vb/C —vr)aix1 =0 (52)

Taking one time derivative of the velocity equality constraint
yields a constraint that is also explicitly a function of the control
variables 7 and u:

SE, =ay. —ar = [(T/mu+g—arlsx1 =0  (53)

Because Eqgs. (51) and (53) are identical, the state equality con-
straint is now represented as a the same control equality constraint
that is then adjoined with a new Lagrange multiplier to the Hamilto-
nian as defined by Eq. (11). The new multiplier has a value of zero
on the outbound and inbound trajectory legs, whereas it takes on a
nonzero value during the stay time trajectory:

SEst = (SEsuytime)3x 1 = SE; = SE| (54
The new Hamiltonian is defined as
H=Av+Xg+@/m)Au—(T/c)r, + € SEsr  (55)
The switching function is now redefined during the stay time:
$= 1A +&l/m— e,

H<t=<t (56)

The thrust unit direction vector is also redefined during the stay
time:

The costate equations (13) and (21) are also affected:

A = —(/\u—i—é)T(a—g) (58)
ar
i = P LT (59)
m

Additionally, a set of point constraints, Egs. (50) and (52), corre-
sponding to the position and velocity state equality constraints must
be adjoined to the Bolza function, either at #, or at #, (Ref. 9). For
this example, the point constraint is adjoined at time #;. The new
Bolza function is

G =my+withy+wi P, + W;¢f

+01(t — 11 — tyay — 57) + 02(ty — to — TOF + 53) (60)

Using these new definitions for the Bolza function and the Hamil-
tonian, the first-order differential conditions for optimality can be
determined. There are three new first-order differential conditions
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that must be defined as a result of the addition of the Lagrange mul-
tipliers adjoined with the state equality constraints’ derivatives in
the Hamiltonian:

Hy =SEgr = [(T/m)u+g —arl3x1 =0 (61)
Tu = mlar — gl (62)

This equation must be satisfied across the stay time trajectory
and defines the thrust vector during the stay time. For this problem,
the term in brackets in Eq. (62) is equal to zero because the accel-
eration of the target body is equal to the gravitational acceleration
the spacecraft experiences at the position of the target. Because the
thrust unit direction vector u is a nonzero quantity, the thrust mag-
nitude 7" must be equal to zero across the entire stay time. However,
if the target were not a planet but possibly another vehicle that is
itself thrusting, the simplifications to Eq. (62) would not be valid,
and the spacecraft could have nonzero thrust.

The other first-order necessary conditions correspond identically
with Egs. (28-39) except for Eq. (37). This condition is now modi-
fied as itis a function of the physical position and velocity constraints
at ,, which are no longer included in the Bolza function when using
the state equality constraint. Equation (37) is replaced with another
condition:

Xoo = Aoy (63)
Equation (36) then yields

Go=6=Hy —H_ =5, -5 T

— (¢"SEst),,_ + (¢"SEst) (64)

Combining this with the result that thrust is zero at the end of
the stay time (i.e., at #,_), the fact that the state equality constraint
is equal to zero during the stay time (i.e., at #,_), and the fact that
the Lagrange multipliers adjoined to the state equality constraint are
zero on the inbound trajectory (i.e., at 7, ) yields

2+

S Toy — 6, =0 (65)
Combining Egs. (32) and (33) yields
S]_Tl_ —01 :O (66)

Therefore, although the first-order conditions were different in
form for the state equality constraint formulation, the results of
the two formulations are identical as shown in Egs. (65) and (66),
which match the boundary targets found using a mass discontinuity
in Egs. (45) and (47) and the conditions found using the two corner
control discontinuities.* Therefore, the multipliers needed at time
t, for the optimal trajectory are the same when solving the problem
using the state equality constraint or the two corner control disconti-
nuities. The state equality constraint formulation is a more rigorous
definition of the problem and verifies the other results.

Sample Missions

Solutions are generated using a nonlinear boundary-value solver
from the Harwell Subroutine Library.® It is a hybrid algorithm that
uses Newton—Raphson and steepest descent methods combined with
a Broyden method to improve the Jacobian matrix to solve the mul-
tipoint boundary-value problem.

Optimal Round-Trip CSI Trajectories
with Mass Discontinuities

Running various missions with mass discontinuities at the tar-
get system produced some interesting results, particularly for CSI
Jupiter missions. For most mission profiles, the slack variables,
which allow the inequalities in the stay time and the total time of

$Data available online at http://www.cse.clrc.ac.uk/nag/hsl/ [cited 18 July
2003].
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Fig. 2 CSI Jupiter TOF vs mass discontinuity.

flight, were driven to zero. This indicates that the optimal solution
lies along the specified boundary. In particular, for the unbounded
VSI engines the two slack variables will always be driven to zero
as the extra degree of freedom of the VSI engine is best exploited
over the longest duration burn times for the outbound and inbound
trajectory legs. However, for CSI engines and VSI engines with
bounds on either the thrust or I, the slack variables are not neces-
sarily always driven to zero. Nonzero slack variables were found for
Jupiter CSI missions using an I, of 5000 s, a power level of 5 MW,
a 1460-day maximum round-trip time, and a 365-day minimum stay
time. An initial mass of 100 mT was specified in this case, and the
final mass value is maximized. The departure dates are in December
2017. Additionally, a negative mass discontinuity was introduced at
Jupiter, and a parametric scan of mass drop-offs was analyzed. At
first, for small mass drop-offs both slack variables were driven to
zero, and the optimal total time of flight was at the limit of 1460
days. However, once the mass drop-off was increased past 7.5 mT,
the total TOF slack variable becomes nonzero, and the optimal total
time of flight is less than 1460 days. The total time of flight then
decreases in a linear fashion as the mass drop-off at Jupiter increases
in magnitude as shown in Fig. 2. This result was very interesting and
demonstrates the capabilities of the optimal control theory govern-
ing the optimization of these round-trip trajectories. These optimal
trajectories that lie off the boundaries of the time inequality con-
straints demonstrate that the solution space is increased when using
such constraints. The inequality time constraints are useful and are a
more general optimization formulation than the fixed, user-specified
values used by Casalino and Colasurdo' and Casalino et al.?

Examining the switching function for these trajectories with the
nonzero slack variable also yields interesting results. For an optimal
solution, the initial and final switching functions are equal from
Eq. (49). When along the total time-of-flight boundary, they must
also be nonzero as the multiplier 6,, adjoined to total time of flight
inequality constraint, is nonzero when the slack variable is zero as
required by Eq. (34). However, when the optimal solution is off the
boundary with a nonzero slack variable, the value for 6, is driven to
zero, and the switching functions at fy and #; must not only equal
each other, but must equal zero. This is shown in Fig. 3, which
plots an optimal round-trip Jupiter trajectory with a mass drop-
off of 17.5 mT. The plot also shows that the inequality constraint
boundary associated with the stay time is still active, and therefore
the switching functions at #; and 1,, while equal, are nonzero.

I, or Thrust Constraints and Mass Discontinuities
on VASIMR Missions

Placing upper and lower bounds on the I, or thrust values reduces
the effectiveness and limits the added degree of freedom the VSI
engine has compared with a CSI engine. However, the results for
missions run using a VASIMR-like range of I, of 3000-30,000 s
are still much more efficient than a comparable CSI engine. The
engines examined use a maximum power level of 5 MW. Optimal
VSl trajectories with the I, constraints were found, which included



780 RANIERI AND OCAMPO

0.01

[\ ,

200 400 600 800 10@0 1200 1440 1600

— Qutbound S*T
-=Inbound S$*T

-0.005 A
-0.01 A
-0.015 -
-0.02 A

-0.025 -

Switching Function Times Thrust

-0.03 1

-0.035 -

-0.04

Time (days)

Fig. 3 CSI Jupiter switching function vs time (Am = —17.5 mT).

800
——m0 (mf =20
700 - mT)
—+—m0 (mf =30
600 - mT)
c ——m0 (mf = 40
£ 500 m
= ——m0 (mf =50
g mT)
E 400 4 -8-Unbounded
£ mf = 20mT
'€ 300 1 -A-Unbounded
= mf =30mT
200 4 —©-Unbounded
: mf = 40mT
100 A -e-Unbounded
( mf = 50mT
0 T T |
-120 -80 -40 0

Mass Discontinuity (mT)
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constant thrust arcs at both the maximum and minimum /g, values
and coast periods, along with periods of variable thrust. Addition-
ally, mass discontinuities were introduced to these VSI missions.
The minimum initial mass needed was analyzed for a parametric
scan of user-specified final mass values and mass discontinuities.

Figure 4 plots one-year round-trip, 60-day stay Mars missions
with departure dates in May 2018. Each line of the legend corre-
sponds to a user-specified final mass. The plot shows the minimum
initial mass needed for each user-specified final mass as the mass
discontinuity is parametrically varied. Only negative mass discon-
tinuities are considered. The figure plots values found for both un-
bounded and bounded I, missions. It strikingly shows the effects of
the bounds on the Iy,. For missions with low final mass values such
as 20 or 30 mT, the minimum initial mass for the unbounded I, and
bounded Iy, mission are almost identical as the magnitude of the
mass drop-off increases from 0 to 110 mT. Some significant separa-
tion is seen for the 30 mT final mass case for mass drop-offs larger
than 85 mT. However, bounded I, missions are not controllable for
a final mass of 30 mT with mass drop-offs greater than 108 mT.
At this point, the bounded Iy, engine needs approximately 20 mT
more initial mass than the unbounded mission. It was not possible
to get missions to converge with mass drop-offs larger than 108 mT
with 30 mT user-specified final mass. A much sharper disparity be-
tween the unbounded and bounded Iy, missions is seen for larger
specified final mass values such as 40 and 50 mT. The bounded I,
40 mT final mass mission becomes uncontrollable for mass drop-
offs larger than 73 mT, and the bounded I, 50 mT final mass mission
is uncontrollable for mass drop-offs larger than 0.9 mT. Figure 4
shows that the unbounded I, missions with final mass values of
40 and 50 mT converge for a much larger range of mass drop-
offs (shown here up to 110 mT) than the bounded case. Clearly,
the Iy, bounds of 3000-30,000 s can greatly reduce the mission
capability.

300
—mO (mf =
35 mT)
250 -
—-m0 (mf =
40 mT)
= §
£ 200 -=-m0 (mf =
S K 45 mT)
£ 150 H
E —mO0 (mf =
£ 47.5 mT)
£
< 100 A =m0 (mf =
48.5 mT)
50 A -*mo0 (mf =
49.5 mT)
0 T T T —mO (mf =
-80 -60 -40 -20 0 50 mT)

Mass Discontinuity at Mars (mT)

Fig. 5 Mars bounded I5p min m0 for given mf vs mass discontinuities.
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E 400 1 mT)
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0 T T T T T T T
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Mass Discontinuity at Jupiter (mT)

Fig. 6 Jupiter bounded 5, min m0 for given mf vs mass discontinuities.

Figure 5 removes the unbounded solutions and shows only the
bounded I, missions shown in Fig. 4. The final data point on the left
of each curve corresponds to the final converged trajectory before
the engine starts becoming uncontrollable. For larger magnitude
mass discontinuities than the leftmost points on each line, it was not
possible to get trajectories to converge. A linear curve connecting
each of these terminal points represents an upper bound for possi-
ble missions using this engine and mission time constraints. This
is a controllability ceiling for the engine for this type of mission.
Trajectories that fall above this curve are infeasible given this set of
mission and engine parameters. To make such missions achievable,
some of the mission or engine parameters such as the stay time, time
of flight, engine power, and I, or thrust bounds must be modified.
Figure 5, which plots Mars missions, and Fig. 6, which plots Jupiter
missions, can be very useful in mission planning. By specifying the
final mass upon Earth return and the mass to be dropped off at the
target system, the user can determine first if the mission is possi-
ble, and, if so, the minimum initial mass needed to achieve such a
mission.

Figure 6 plots the same pattern of data for round-trip Jupiter
missions, again showing a controllability ceiling for the engine.
The total time of flight for these missions is 1460 days, and the
minimum stay time at Jupiter is 365 days.

Conclusions

The methodology presented in this paper allows a rigorous opti-
mization of many round-trip trajectories using realistic engine mod-
els. The addition of mass discontinuities and specific impulse /g,
or thrust bounds for variable-specific-impulse (VSI) engines allows
trajectories to be generated that account for these conditions in actual
missions. Using these optimization capabilities an engine’s control-
lability ceiling showing its feasible and infeasible regions can be
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found, as shown here for VSI round-trip missions with I, bounds
and a mass drop-off at the target. The feasible missions shown are
for a 5-MW engine with the /;, bounded between 3000 and 30,000s.
The missions presented target Mars with a one-year round-trip time
and 60 days at Mars and target Jupiter with a four-year round-trip
time and one year at Jupiter. The inequalities in the stay time and
total time of flight are shown to be useful in finding optimal tra-
jectories as shown for constant-specific-impulse Jupiter missions,
where the optimal round-trip trajectory is actually more efficient
with a shorter total time of flight than the user-specified maximum
time.

Additionally, the boundary-value problem posed by analyzing the
round-trip trajectory as an optimal control problem with two control
discontinuities at the arrival and departure from the target has been
verified by reformulating the problem. By approaching the round-
trip trajectory as an optimal control problem with a state equality
constraint requiring the spacecraft to have zero relative position and
velocity with respect to the target system during the stay time, the
original boundary-value problem is derived with the same unknown
and constraint vectors. This technique also allows for the target to
be a body undergoing acceleration forces other than gravity, for
example, a thrusting spacecraft. Future work might also consider a
minimum heliocentric distance constraint and the escape and capture
spiral dynamics.
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